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ABSTRACT: Hadamard matrices have wide applications in image analysis, signal processing, coding 

theory, cryptology and combinatorial designs. The codes generated from Hadamard matrices are of much 

importance due to the large distance between them. These codes can correct large number of errors and are 

essential component of the study in communication channels. Rhotrix is a new paradigm of research study 
and has wide applications in cryptography and coding theory. In the present paper, we introduce 

Hadamard codes using Hadamard rhotrices.  
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I. INTRODUCTION 

Transformation of data over insecure channels is 

prevailing all over the world. Security of data from 

hackers is the need of present scenario. Cryptography is 

the science which provides confidentiality, authenticity 

and integrity of data travelling through insecure 

channels. In cryptography sequences of symbols are 
used for the pieces of information. This process of 

representation is called coding and the symbols are 

called code symbols. A sequence of code symbols is 

called a code word. In electronic transmission, it is 

necessary that the code symbols should be small. 

Hence, binary code is very applicable.  

Code words are of constant length. A block code is one 

in which all code words have the same length �. Given 

any two code words, the Hamming distance between 

two code words is defined as the number of 

components in which the words disagree. A distance � 

code is one in which the minimum of all the Hamming 

distances between the words is at least �. An (n, M, d; 

q) code means a set of M code words of length n with � 

symbols and Hamming distance d [1]. An (n, M, d; q) 

code is optimal if  M is as large as possible for given n, 

d and q. Plotkin [2] obtained the following bounds for 

binary codes:  
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≤         if d is even and 2 ,d n d≤ <                   …(1.1) 

                        2M n≤              if d  is even and   2 ,n d=                   …(1.2) 

                         

                     
1
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d n

+ 
≤  + − 

    if d is odd  and 2 1,d n d≤ < +             …(1.3) 

                       2 2M n≤ +           if d is odd and 2 1.n d= +                  …(1.4)        

   
The famous matrix with orthogonal property was 

defined by Sylvester [3] in 1867 and further studied by 

Hadamard [4] in 1893 and now known as Hadamard 

matrix. Hadamard matrices have received much 

attention in the recent past, owing to their well-known 

and promising applications [5]. Sarukhanyan et al. [6] 

studied the Hadamard matrices and their applications in 

image analysis, signal processing, coding theory, 

cryptology and combinatorial designs [7-10]. The 

orthogonal codes from Hadamard matrices are useful in 

encoding and decoding a information in very noisy 

channels because these codes have large distance and 

can correct large number of errors. There are several 

methods to construct Hadamard matrices. Kimura and 

Ohmori [11] constructed Hadamard matrices of order 

28.  
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Koukouvinos and Seberry [12] used orthogonal 

designs for the construction of Hadamard matrices. 

Singh et al. [13, 14] constructed Hadamard matrix 

using BIBD and Frobenius groups. Szollosi [15] 

studied the construction as well as classification of 
Hadamard matrices. Sajadieh et al. [16] used 

Vandermonde matrices for the construction of Finite 

Field Hadamard matrices.   

Rhotrix is a new concept introduced in the literature of 

mathematics in 2003 [17]. It is a mathematical object 

which is, in some way between  22× - dimensional 

and 33×  - dimensional matrices. A rhotrix of 

dimension 3 is defined as 

,

5

432

1

3

a

aaa

a

R =  …(1.5) 

where .R,,,, 54321 ∈aaaaa A rhotrix of higher 

order is defined in [18]. Algebra and analysis of 

rhotrices is discussed in the literature [17-28]. 

Hadamard rhotrix over finite field is defined in [29]. 

We give necessary and sufficient conditions for 

Hadamard rhotrices and its sub-rhotrices in Theorem 
2.1 and Theorem 2.3.We introduce Hadamard codes 

by making the use of Hadamard rhotrices in Theorem 

2.5.     

II. MAINS RESULTS 

Theorem 2.1 A rhotrix 
n

R is Hadamard rhotrix over 

GF(2)  iff there exist two square matrices whose rows 

are orthogonal to each other. 

Proof: Let 
n

R be a Hadamard rhotrix over GF(2) 

defined as 

   

               

11

21 11 12

31 21 22 12 13

1 1

2 1 2 1 1 2 1 2

1 1 1 1

... ... ... ... ... ... ... ....

... ... ... ... ... ... ... .

... ... ... ... ... ... ... ... ...

n t t

tt t t t t t t t t

tt t t t t

tt

a

a c a

a c a c a

R a a

a c a c a

a c a

a

− − − − − − − −

− − − −

=           …(2.1) 

Then 1M  and 2M are two coupled matrices in
n

R defined as 

 

                      

11 12 13 1

21 22 23 2

1 31 32 33 3

1 2 3

...

...

...

... ... ... ... ...
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t

t

t

t t t tt

a a a a

a a a a
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 
 
 
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 
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 

                                   …(2.2) 

 

                      

11 12 13 1 1

21 22 23 2 1

2 31 32 33 3 1

1 2 3 1 1

...

...

... .

... ... ... ... ...

...

t

t

t

t t t t t

a a a a

a a a a

M a a a a

a a a a

−

−

−

− −
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 
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 
 
 
 

                        …(2.3) 
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By the definition of Hadamard rhotrix,  

11 12 13 1 21 22 23 2

11 12 13 1 1 21 22 23 2 1

21 22 23 2 31 32 33 3

21 22 23 2 1 31 32 33 3 1

31 32

( , , ,.,., ).( , , ,.,., ) 0,

( , , ,.,., ).( , , ,.,., ) 0,

( , , ,.,., ).( , , ,.,., ) 0,

( , , ,.,., ).( , , ,.,., ) 0,

( ,

t t

t t

t t

t t

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a

− −

− −

=

=

=

=

33 3 41 42 43 4

31 32 33 3 1 41 42 43 4 1

1 1 1 1 2

, ,., ., ).( , , ,.,., ) 0,

( , , ,.,., ).( , , ,.,., ) 0,

(.,.,., ., .,.,., ).(., .,.,.,.,.,., ) 0,

(.,.,., ., .,.,., ).(., .,.,.,.,.,., ) 0,

(.,., ,., , ).( ,., ,

t t

t t

t t t t t tt tt

a a a a a a

a a a a a a a a

a a a a a

− −

− − − − −

=

=

=

=

1 , ) 0.
tt

a =

 

This gives,  
1

M and
2

M are Hadamard matrices as rows of two matrices are orthogonal to each other. 

Example 2.2 Let the rhotrix of order 9 be defined as 

               
9

1

0 1 0

1 0 1 0 0

0 1 0 1 1 1 1

.1 0 1 0 0 0 0 0 0

0 1 1 1 1 1 1

0 0 0 0 0

1 1 0

0

R =                               …(2.4) 

Two coupled matrices of (2.4) are 

1

1 0 0 1 0

0 1 1 0 1

,1 0 0 1 0

0 1 1 0 0

1 0 0 1 0

M

 
 
 
 =
 
 
 
 

2

1 0 1 0

0 1 0 1
.

1 0 1 0

0 1 0 1

M

 
 
 =
 
 
 

 

The inner product of different rows in 
1

M over GF(2) is  

 

(1, 0, 0, 1, 0) (0, 1, 1, 0, 1) = 0, 

 

(0, 1, 1, 0, 1) (1, 0, 0, 1, 0) = 0, 

 

(1, 0, 0, 1, 0) (0, 1, 1, 0, 0) = 0, 

 

(0, 1, 1, 0, 0) (1, 0, 0, 1, 0) = 0, 
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(1, 0, 0, 1, 0) (1, 0, 0, 1, 0) = 0, 

(1, 0, 0, 1, 0) (0, 1, 1, 0, 0) = 0, 

(1, 0, 0, 1, 0) (1, 0, 0, 1, 0) = 0, 

(0, 1, 1, 0, 1) (1, 0, 0, 1, 0) = 0, 

(1, 0, 0, 1, 0) (1, 0, 0, 1, 0) = 0, 

(1, 0, 0, 1, 0) (0, 1, 1, 0, 1) = 0, 

(0, 1, 1, 0, 0) (1, 0, 0, 1, 0) = 0, 
(0, 1, 1, 0, 0) (0, 1, 1, 0, 1) = 0, 

(0, 1, 1, 0, 0) (1, 0, 0, 1, 0) = 0, 

(1, 0, 0, 1, 0) (0, 1, 1, 0, 1) = 0, 

(1, 0, 0, 1, 0) (1, 0, 0, 1, 0) = 0, 

(1, 0, 0, 1, 0) (1, 0, 0, 1, 0) = 0. 

Since all the rows in 
1

M are orthogonal to each other. Therefore, it is Hadamard matrix. 

Similarly, the  inner product of  different rows in 

2

1 0 1 0

0 1 0 1
,

1 0 1 0

0 1 0 1

M

 
 
 =
 
 
 

 

over GF(2) is 

 

(1, 0, 1, 0) (0, 1, 0, 1) = 0, 

(1, 0, 1, 0) (1, 0, 1, 0) = 0, 

(1, 0, 1, 0) (0, 1, 0, 1) = 0, 

(0, 1, 0,1) (1, 0, 1, 0) = 0, 
(0, 1 ,0, 1) (0, 1, 0, 1) = 0 etc. 

Since all the rows in 
2

M are orthogonal to each other. Therefore, it is also a Hadamard matrix. Both the coupled 

matrices  
1

M  and 
2

M  of the rhotrix 9R are orthogonal. Therefore, 9R is Hadamard rhotrix. 

Theorem 2.3 A rhotrix 
n

R  of odd order ,3>n  is Hadamard rhotrix iff the sub-rhotrices of 
n

R given by

(2 2)
, 1, 2,3, ...

n p
R p

− +
= are Hadamard over GF(2). 

Proof: Let 
n

R be a Hadamard rhotrix defined

11

31 21 12

41 32 22

2,1 1, 1

,1 1,1 2,2 3, 1 2, 1 1,

,2 1,2 4, 1 3,

2, 1 2,

, 1 1, 1 2,

,

. .

. . . . .

. . . .

. . . .

. . .

d n

d d d n n nn

d d n n

d n d n

d n d n d n

d n

a

a a a

a a a

a a

a a a a a aR

a a a a

a a

a a a

a

− −

− − − −

− −

− − −

− − − −

=                 …(2.5) 
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The sub-rhotrix of 
n

R for � = 1 is                 

11

31 21 12

41 32 22

2,1

,1 1,1 2,2 1, 14

,2 1,2 3, 1

2, 1

, 1

. .

. . . . . .

. . . . . .

. . . . .

. . . . .

. .

d

d d d nn

d d n

d n

d n

a

a a a

a a a

a

a a a aR

a a a

a

a

−

− − −−

− −

− −

−

=                …(2.6) 

 

 

The sub-rhotrix of 
n

R for � = 2 is 

         

11

31 21 12

2,1 32 22

,1 1,1 2,26

,2 1,2

, 1

. .

. . . .

. . .

. . .

d

d d dn

d d

d n

a

a a a

a a a

a a aR

a a

a

−

− −−

−

−

= .           …(2.7) 

The sub-rhotrix of 
n

R for � = 3 is 

 

                

11

31 21 12

8 ,1 32 22

,2

.. .

. .

.

n d

d

a

a a a

R a a a

a

−
=

                             …(2.8) 

By the definition of Hadamard rhotrix, 4n
R

−
, 6n

R
−

, 8n
R

−
 are Hadamard. Similarly, for all the values of p , all 

the sub-rhotrices of 
n

R are Hadamard. If all the sub-rhotrices of 
n

R  are Hadamard, then all the rows of coupled 

matrices in the sub-rhotrices are orthogonal to each other. Therefore, 
n

R is Hadamard rhotrix.   
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Example 2.4    Let the rhotrix of order 9 be represented as 

 

                    9

1

0 1 0

1 0 1 0 0

0 1 0 1 1 1 1

.1 0 1 0 0 0 0 0 0

0 1 1 1 1 1 1

0 0 0 0 0

1 1 0

0

R =                            …(2.9) 

The coupled matrices in the rhotrix (2.9) are 

 

                           1

1 0 0 1 0

0 1 1 0 1

,1 0 0 1 0

0 1 1 0 0

1 0 0 1 0

M

 
 
 
 =
 
 
 
 

2

1 0 1 0

0 1 0 1
.

1 0 1 0

0 1 0 1

M

 
 
 =
 
 
 

 

Since the rows in both matrices are orthogonal to each other .Therefore 9R  is Hadamard rhotrix given in 

Example 2.2. The sub rhotrix of order 4n
R

−
 for � = 1  is  

   

                   5

1

0 1 0

.1 0 1 1 1

0 0 0

1

R =                                                …(2.10) 

The coupled matrices in R5 are  

1

1 0 1

0 1 0

1 0 1

M

 
 

=  
 
 

,
2

1 1

0 0
M

 
=  
 

. 

 In matrix 
1

M , the inner product of the rows over GF(2) is 

(1, 0, 1) (0, 1, 0) = 0, 

 

(0, 1, 0) (1, 0, 1) = 0, 
 

(1, 0, 1)) (1, 0, 1) = 0. 

 

In 
1

M , all the rows are orthogonal to each other. Therefore, it is Hadamard matrix. In the matrix 
2

M , the inner 

product of the rows over GF(2)  is 

(1, 1) (0, 0) = 0 . 
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The rows are orthogonal to each other in 
2

M . Therefore, 
2

M  is Hadamard matrix.  Hence, 
5

R  is Hadamard 

rhotrix because all the rows in both the coupled matrices are orthogonal to each other. Now, the sub rhotrix of order 

6n
R

−
 for � = 2 is  

                                               

3

1

0 0 0 .

1

R =

                                

…(2.11) 

The coupled matrices in 
3

R  are  

1

1 0

0 1
M

 
=  
 

, ( )2 0M = . 

Therefore,
3

R is Hadamard rhotrix because rows are orthogonal to each other in both the coupled matrices. Hence 

all the sub rhotrices of 9R  are Hadamard.  

Theorem 2.5 If Hadamard rhotrix has coupled matrix of order 4t and 4 1t − , then this implies the existence of the 

following optimal codes: (4 ,8 ,2 ;2),t t t (4 1,4 , 2 ;2),t t t− (4 1,8 ,2 1;2)t t t− − , (4 2,2 ,2 ;2)t t t− , 

(4 2,4 ,2 1;2)t t t− − and (4 3,2 ,2 1;2).t t t− −  

Proof: Let 
n

R  be Hadamard rhotrix having coupled matrices 
1

H and 
2

H  of order 4t and 4 1t −   

respectively. Consider 	
 and 	�	be two matrices of order 4t  and 4 1t − whose all entries are 1. The 8t  rows 

of two matrices  
1 1

4 1 12
( )

t
W J H= +  

and  
2 1

4 1 12
( )

t
W J H= −  

form a (4 ,8 ,2 ;2)t t t code. In order to construct the remaining codes, we delete the first column of 
1

H and obtain 

matrices 
3

4t
W  

and  
4 1

4 1 12
( ),

t
W J H= −  

then the 4t rows of   
3

4t
W  

and the 8t  rows of  
3

4t
W  and  

4

4t
W  

give second and third code. Now, we delete the first column of 
3

4t
W and the rows which start with 1 to obtain the 

matrix 
5

4t
W . This matrix gives the fourth code. Further, we consider the matrix 

2
H . The8t  rows of two matrices  

1 1
4 1 2 22

( )
t

W J H
−

= +  

and  
2 1

4 1 2 22
( )

t
W J H

−
= −  

form the same code (4 1,8 ,2 1;2)t t t− − code. On deleting the first column of 
2

H , we get the matrix 
3

4 1t
W

−
. 

This matrix gives (4 2,4 ,2 1;2)t t t− − code. Now, we delete the first column of 

3

4 1t
W

−
 

and the rows which start with 1 to obtain the matrix 
4

4 1t
W

−
. This matrix gives the last code.  
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Example 2.6 Let 
23

R be a Hadamard rhotrix defined as 

23

1

1 1 1

1 1 0 1 1

1 1 0 0 1 1 1

1 1 1 0 0 1 0 1 1

1 1 0 1 0 0 1 0 1 1 1

1 1 0 0 1 0 0 1 0 1 1 1 1

1 1 0 0 0 1 0 0 1 0 1 1 1 1 1

1 1 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1

1 1 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1

1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 1

1 1 0 1 1 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0

0 1 1 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1

1 1 1 0 0 0 1 0 0 1 0 1

R = ,

1 1 0 0 0

1 1 0 0 0 1 0 0 1 0 1 1 1 0 0

1 0 0 0 1 0 0 1 0 1 1 1 0

0 0 0 1 0 0 1 0 1 1 1

0 0 1 0 0 1 0 1 1

0 1 0 0 1 0 1

1 0 0 1 0

0 0 1

0 (2.12)

 

                                                                                                              

then the coupled matrices of the rhotrix 
23

R are of order 12 and 11 respectively defined as 

1

1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 1 1 0 0 0 1 0

1 0 0 1 0 1 1 1 0 0 0 1

1 1 0 0 1 0 1 1 1 0 0 0

1 0 1 0 0 1 0 1 1 1 0 0

1 0 0 1 0 0 1 0 1 1 1 0

1 0 0 0 1 0 0 1 0 1 1 1

1 1 0 0 0 1 0 0 1 0 1 1

1 1 1 0 0 0 1 0 0 1 0 1

1 1 1 1 0 0 0 1 0 0 1 0

1 0 1 1 1 0 0 0 1 0 0 1

1 1 0 1 1 1 0 0 0 1 0 0

M

 
 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 
 
 

 

            

and  

                                    

2

1 1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 1 1 0 0 0 1

1 0 0 1 0 1 1 1 0 0 0

1 1 0 0 1 0 1 1 1 0 0

1 0 1 0 0 1 0 1 1 1 0

.1 0 0 1 0 0 1 0 1 1 1

1 0 0 0 1 0 0 1 0 1 1

1 1 0 0 0 1 0 0 1 0 1

1 1 1 0 0 0 1 0 0 1 0

1 1 1 1 0 0 0 1 0 0 1

1 0 1 1 1 0 0 0 1 0 0

M

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

                       

From the coupled matrix 1M , we construct the following codes for (2.12): 
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The matrices  

                    

1

12

1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 1 1 0 0 0 1 0

1 0 0 1 0 1 1 1 0 0 0 1

1 1 0 0 1 0 1 1 1 0 0 0

1 0 1 0 0 1 0 1 1 1 0 0

1 0 0 1 0 0 1 0 1 1 1 0

1 0 0 0 1 0 0 1 0 1 1 1

1 1 0 0 0 1 0 0 1 0 1 1

1 1 1 0 0 0 1 0 0 1 0 1

1 1 1 1 0 0 0 1 0 0 1 0

1 0 1 1 1 0 0 0 1 0 0 1

1 1 0 1 1 1 0 0 0 1 0 0

W

 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 

                        …(2.13) 

and  

 

                                  

2

12

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 1 1 1 0 1

0 1 1 0 1 0 0 0 1 1 1 0

0 0 1 1 0 1 0 0 0 1 1 1

0 1 0 1 1 0 1 0 0 0 1 1

0 1 1 0 1 1 0 1 0 0 0 1
,

0 1 1 1 0 1 1 0 1 0 0 0

0 0 1 1 1 0 1 1 0 1 0 0

0 0 0 1 1 1 0 1 1 0 1 0

0 0 0 0 1 1 1 0 1 1 0 1

0 1 0 0 0 1 1 1 0 1 1 0

0 0 1 0 0 0 1 1 1 0 1 1

W

 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 

                          …(2.14) 

give code (12, 24, 6; 2). 

Now,  

                               

3

12

1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 1 1 0 0 0 1 0

0 0 1 0 1 1 1 0 0 0 1

1 0 0 1 0 1 1 1 0 0 0

0 1 0 0 1 0 1 1 1 0 0

0 0 1 0 0 1 0 1 1 1 0

0 0 0 1 0 0 1 0 1 1 1

1 0 0 0 1 0 0 1 0 1 1

1 1 0 0 0 1 0 0 1 0 1

1 1 1 0 0 0 1 0 0 1 0

0 1 1 1 0 0 0 1 0 0 1

1 0 1 1 1 0 0 0 1 0 0

W

 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 

                      …(2.15) 

And   
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4

12

0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 1 1 0 1

1 1 0 1 0 0 0 1 1 1 0

0 1 1 0 1 0 0 0 1 1 1

1 0 1 1 0 1 0 0 0 1 1

1 1 0 1 1 0 1 0 0 0 1

1 1 1 0 1 1 0 1 0 0 0

0 1 1 1 0 1 1 0 1 0 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 1 1 0 1 1 0 1

1 0 0 0 1 1 1 0 1 1 0

0 1 0 0 0 1 1 1 0 1 1

W

 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 

                        …(2.16) 

give code (11, 24, 5; 2) and the matrix (2.15) gives code (11,12,6;2). 

Further, 

                                  
5

12

1 0 1 1 1 0 0 0 1 0

0 1 0 1 1 1 0 0 0 1

1 0 0 1 0 1 1 1 0 0
,

0 1 0 0 1 0 1 1 1 0

0 0 1 0 0 1 0 1 1 1

1 1 1 0 0 0 1 0 0 1

W

 
 
 
 

=  
 
 
  
 

                        …(2.17) 

which gives code  (10,6,6;2). 

Similarly, 

                                 

1

11

1 1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 1 1 0 0 0 1

1 0 0 1 0 1 1 1 0 0 0

1 1 0 0 1 0 1 1 1 0 0

1 0 1 0 0 1 0 1 1 1 0

1 0 0 1 0 0 1 0 1 1 1

1 0 0 0 1 0 0 1 0 1 1

1 1 0 0 0 1 0 0 1 0 1

1 1 1 0 0 0 1 0 0 1 0

1 1 1 1 0 0 0 1 0 0 1

1 0 1 1 1 0 0 0 1 0 0

W

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

                      …(2.18)  

   and 

                                    

2

11

0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 1 1 1 0

0 1 1 0 1 0 0 0 1 1 1

0 0 1 1 0 1 0 0 0 1 1

0 1 0 1 1 0 1 0 0 0 1

0 1 1 0 1 1 0 1 0 0 0

0 1 1 1 0 1 1 0 1 0 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 1 1 0 1 1 0 1

0 0 0 0 1 1 1 0 1 1 0

0 1 0 0 0 1 1 1 0 1 1

W

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

                         …(2.19) 

give code (11, 24, 5;2).  
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Now, 

 

 

                               

3

11

1 1 1 1 1 1 1 1 1 1

0 1 0 1 1 1 0 0 0 1

0 0 1 0 1 1 1 0 0 0

1 0 0 1 0 1 1 1 0 0

0 1 0 0 1 0 1 1 1 0

.0 0 1 0 0 1 0 1 1 1

0 0 0 1 0 0 1 0 1 1

1 0 0 0 1 0 0 1 0 1

1 1 0 0 0 1 0 0 1 0

1 1 1 0 0 0 1 0 0 1

0 1 1 1 0 0 0 1 0 0

W

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

                         …(2.20) 

 This matrix gives code (10, 12, 5; 2). Further,  

                                 
4

11

1 0 1 1 1 0 0 0 1

0 1 0 1 1 1 0 0 0

1 0 0 1 0 1 1 1 0
.

0 1 0 0 1 0 1 1 1

0 0 1 0 0 1 0 1 1

1 1 1 0 0 0 1 0 0

W

 
 
 
 

=  
 
 
  
 

                         …(2.21) 

This matrix gives code (9, 6, 5; 2). 

III. CONCLUSION 

In this paper, we have introduced Hadamard codes 

using Hadamard rhotrices over finite field 
�(2) 
which play inevitable role in coding theory and 

cryptography. 
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